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Abstract 

A simple experimental modification to the A~, A20 
technique for measuring single-crystal Bragg reflec- 
tions has been demonstrated [Mathieson & Stevenson 
(1984). Aust. J. Phys. 37, 657-665]. This leads to a 
significant improvement in this technique in that the 
source component is reduced to a minor (angular) 
role, so that the greater resolution-capability/infor- 
mation-content, inherent in the Aw, ,420 method rela- 
tive to the conventional/to., profile method, is further 
enhanced. With only two major components in the 
two-dimensional distribution, the individual distribu- 
tions of these components can be determined with 
some accuracy. These components are the reflectivity 
(often referred to previously as the mosaic spread) 
and the wavelength distribution. The resolution func- 
tion, R(`4w, `420), can be estimated from the experi- 
mental parameters and is sufficiently small that the 
deconvoluted reflectivity for imperfect crystals is 
derivable. This procedure is demonstrated, in the 
present case, for a small single crystal of CulnSe2. 

I. Introduction 

The basic design of the single-crystal X-ray diffrac- 
tometer was established by Bragg (1914). In essence, 
it has not changed a great deal nor has the measure- 
ment procedure associated with it. This procedure 
involves traversing a single reflection by changing the 
orientation of the specimen crystal, step by step, and 
recording, at each step, Aw, the diffracted intensity 
passed through a relatively wide aperture in front of 
the detector, thereby providing the one-dimensional 
intensity profile, I(Aw), of the reflection. The main 
purpose of the original instrument was the estimation 
of the integrated intensity, ~ l(Ato) dAw. 

For several decades, this instrument was over- 
shadowed by photographic recording, using effec- 

0108-7673/85/030290-07501.50 

tively a very large (or no) aperture. Then, in the 1950's, 
the X-ray diffractometer was resurrected as an instru- 
ment for quantitative measurements on small single 
crystals (see Arndt & Willis, 1966), and Alexander & 
Smith (1962) carried out an analysis of the relation- 
ship of the profile curve I(Ato) to what they nomi- 
nated as the various major components of the experi- 
ment. They assumed the probable functional form, 
in terms of the one variable Ato, of a number of 
components, the mosaic spread, /x, the source size, 
o-, the wavelength distribution, A, and the specimen- 
crystal size, c. The theoretical intensity curve, 
l(Ato)~,.<a.c, was derived by sequential convolution 
of the functions. In this analysis, however, there was 
one component whose parametric relevance was 
largely ignored, namely the aperture in front of the 
detector. The variation of signal distribution across 
the aperture, I(A20), for a given value of Aw, was 
not examined or explored, only the outer limits 
necessary to ensure collection of the total signal 
within the specimen scan limits were investigated 
( 'minimum receiving aperture'). Hence, what is 
measured under the circumstances of the conven- 
tional procedure is detailed in (1): 

f A202 
l(Ao))tz,o.X,c,A(a20 ) = l(Aw, A20),~.,~.,.c dA20, 

• /A2O I 
(1) 

and it is evident that one is really dealing with a 
five-component system in which the square-wave 
function, A(A20), corresponding to the aperture, is 
the largest component, in angular terms, by the nature 
of the determination of its outer limits. 

The main aim of the analysis by Alexander & Smith 
(1962) was directed at measuring relative integrated 
intensities with high reliability. If, however, one 
wishes to use the diftractometer to extract, from such 
one-dimensional intensity measurements, informa- 
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tion on matters other than integrated intensity, say, 
the mosaic spread, /z(zaco), a physical quantity that 
is specimen specific, there are considerable difficul- 
ties. The function sought is generally one of the 
smaller of those components that, convoluted 
together, reproduce the profile distribution, I(zato), 
and, hence, because of its relative size, is virtually 
impossible to extract by deconvolution procedures 
from normal diffractometer measurements. Under 
these circumstances, physical modification of the 
specimen is necessary to increase the range of/z (zaco) 
so that it becomes the dominant component and is 
then extractable by mathematical procedures. 
However, such modification may not be advisable or 
even feasible and it then becomes necessary to con- 
sider the problem ab initio. 

When dealing with an experiment involving several 
components, the restriction to one-dimensional 
measurement is obviously a severe one, particularly 
when, as noted above, the component of greatest 
physical significance, the mosaic spread,/z, is likely 
to be a relatively minor component (major and minor 
in terms of angular range). There is an obvious advan- 
tage to be gained in defining the experimental situ- 
ation more rigorously by either reducing the number 
of major components or by increasing the number of 
measurement parameters (variables) or both. 

The first experimental exploration of the intensity 
distribution, I(Ao~, ,520) (Mathieson, 1982), using a 
narrow aperture in front of the detector, corresponded 
to an increase in the number of measurement par- 
ameters. The increased information content derived 
with the additional parameter was immediately 
obvious in that the individual major components were 
readily identified by their characteristic loci (or 
slopes) in Ato, A20 space. There was, in effect, a form 
of partial deconvolution. Preliminary estimates of the 
three principal components,/z, tr, h, could be obtained 
by slice scans (Mathieson, 1982) while additional 
precision could be envisaged by generating synthetic 
distributions, lca~c(At°, A 20), from these preliminary 
estimates and refining against the experimental distri- 
bution. A theoretical study has been presented 
(Mathieson, 1984a), which stresses the intimate 
relationship between/z and the 'level of interaction' 
(Mathieson, 1979) or reflectivity, r, and hence the 
vital importance of deriving an accurate estimate of 
this particular component distribution. From this 
point on, this distribution will be referred to as tz /r  
(or r/lz). 

While the Ato, A20 approach opens up the 
measurement situation and points to the possibility 
of deriving accurate estimates of /z / r ,  the situation is 
still relatively complex in that three ma jo r  com- 
ponents remain and, in addition, there are minor 
components, such as crystal size, c (Mathieson, 
1984b), whose presence would degrade the accuracy 
of a deconvolution process based on the three major 

components alone. Again, it is clear that a change to 
bring the component/parameter ratio nearer to unity 
would be valuable. 

To this end, we have recently arrived at an 
improved experimental technique (Mathieson & 
Stevenson, 1984) by which the effective size of the 
source, in the diffraction plane, from a standard X-ray 
tube, normally a major component, can be reduced 
markedly without significant loss of peak intensity in 
the I(zaco, za20) distribution. This means that there 
are only two principal components, tz /r  and A, 
remaining in Aco, A20 space and their individual dis- 
tributions can therefore be determined more directly 
and more accurately. In addition, the minor com- 
ponents previously buried in the distribution associ- 
ated with three major components begin to emerge 
and are more readily identified. 

To illustrate the capabilities of the improved tech- 
nique, an example concerning the derivation of a 
reflectivity curve is presented. To assist in the pres- 
entation, for this and other examples, it is first 
necessary to summarize the properties of /to),/t20 
space and of affine transformations since these facili- 
tate use of that space. 

2. A~o, A20 space 

The space we are concerned with is the local region 
adjacent to a Brags reflection where the component 
parameters are essentially linear. Conventionally, 
Brags reflections are dealt with in terms of reciprocal 
space, e.g. in discussing the resolution function, cf. 
Cochran (1969), but, for our purposes, there are dis- 
advantages in that viewpoint, as we indicate below. 

Let us consider, first, the situation in reciprocal 
space in respect of two reciprocal-lattice points inter- 
acting with the Ewald circle, one at a low 0 angle 
and the other at a high 0 angle, Figs. l(a)(i)  and (ii) 
respectively. The loci of the components/~, or, A and 
the detector parameter A20 are indicated. Appropri- 
ately oriented and on an enlarged but the same scale, 
these two cases are depicted in Figs. l(b)(i) and (ii) 
respectively to facilitate comparison of the disposi- 
tion of the loci. These figures demonstrate the way 
in which the dimensions of the components p, or, h 
all change with 0, being proportional to d*, with an 
extra tan 0 scale expansion for A and also how the 
relative dispositions of the loci change with 0. 

On the other hand, when we view the local space 
adjacent to the Brags reflection for these two cases 
in terms of simple angular measure, Figs. l(c)(i) and 
(ii), then ~, cr and A20 do not change with 0 nor 
does the relative disposition of the loci (see also 
Mathieson, 1983a). Only A changes dimensionally 
with 0, but in a well established manner. Because of 
these features, there are, for ease of comparison of 
reflections at different 0 angles and for the detection 
of the minor differences between them, obvious 



292 REFLECTIVITY CURVES OF IMPERFECT CRYSTALS 

advantages in dealing in terms of the local angular 
measure, and we have chosen in practice to deal in 
terms of the operational angular variables Ato and 
A20, the specimen local angular movement and what 
we may refer to as the detector angular dimension 
space respectively. 

With a two-dimensional array of measurements 
(data points), one can carry out various transforma- 
tions so that the various components may be more 
readily recognized, appreciated or measured. The 
possibilities of such transformations are discussed in 
§3. 

3.  A f f i n e  t r a n s f o r m a t i o n s  

The variable A20 lies along the Ewald circle and, for 
the limited region adjacent to the point P [Fig. l(a)], 
is effectively linear and tangential to the circle at that 
point. It therefore corresponds to the displacement 
across the conventional wide aperture. Hence it fol- 
lows that, when one considers a scan mode to/sO 
(Mathieson, 1983a, b), what one does in the classical 

(i) (ii) 

~/ /~0 ~ \ i  ~ 
. . . . . . . . . . . .  . .  ...... 

"-~,, .~./ - .  ........ 
(a) 

i ~i / 
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I p~__ k ! 
t-, , ~ [ .~ f  o 

A20 [ 
X X 

(b) 

Aw o: Aw ~ ~ n _ ~  
p A2O P A~O 

A28 A28 
(c) 

Fig. 1. Comparison of  (i) low-0 and (ii) high-0 reflections. (a) 
The Ewald-circle construction for diffraction at a point P associ- 
ated with a vector d* in reciprocal space. The angular variables 
Aw, a20  and the components /.t, tr, A are identified. (b) These 
diagrams reproduce on an enlarged scale the details around 
point P from Figs. l(a)(i)  and (ii) respectively. They show how, 
in reciprocal space, the components /~, tr, A change both their 
size and mutual disposition with change in 0. (c) The relation- 
ships between the components/.q cr, A and the angular variables 
in ato, a 2 0  space. The invariance of the mutual disposition of 
the components /~, ~, A and the angular variables Aw, A20 is 
demonstrated as is the dimensionality of the components /~, o'. 
The only one of  these components varying intrinsically with 0 
is A, whose length is proportional to tan 0. 

viewpoint when moving the specimen crystal from 
Atom to Awm+l is tO displace the detector aperture 
along A20 by +sAto. In the Ato, A20 viewpoint, this 
corresponds to displacing the line of A20 data points 
for Atom+l by -sAto relative to the line of A20 data 
points for Atom since one is moving the detector flame 
of reference relative to the diffraction distribution. In 
other words, the scan procedure corresponds to an 
affine transformation parallel to one axis, the A20 
axis. It is useful to summarize the effect of such 
transformations on the mutual orientation of the 
components and their relation to the operational 
parameters. 

( a ) Displacement parallel to .420 

In mathematical terms, this class of displacement 
can be represented by ZlwtS~=Ato C°) and a20  Cs/= 
A20 (°) - sAto ~°~. s = 0 corresponds to the to scan, s = 1 
to the o2/0 scan and s =2 to the to~20 scan, Figs. 
2(a)(i), (ii) and (iii) respectively. The changes that 
occur in respect of the components ~, o-, A are depic- 
ted in Fig. 2(a), that for the crystal size, c (Mathieson, 
1984b), being included for completeness. The latter, 
unlike the first three, changes the slope of its locus 
with change in 0. It has already been pointed out 
(Mathieson, 1983a) that the s = 1 transformation [Fig. 
2(a)(ii)] provides a representation that is reciprocal- 
lattice compatible. 

This viewpoint provides a useful physical picture 
of the relationship between scan modes and how, for 
each scan mode, the various components line up with 
respect to the A20 axis. It can aid in avoiding misin- 
terpretations that can creep in when one's viewpoint 
is restricted to a purely one-dimensional one (see 
Mathieson, 1983c). 

(i) (ii) (iii) 
I I I A~co,o, 

s:0 Aw(h°) s :1 Aw(('°) ~ s:2 

/~2@ ~°,°~ A20(,,ol A20(2,oI 

(a) 

I , :o  I } ' : '  

Aw(°'°) (7/ /~ Aw(/~"/2) Aw(o,~l 

F z c 

~20 (0,0) ~ 0  (0,~) ~ . .  ~2~(0,, ) 
" - - - . x  

(b) 
Fig. 2. The effect of  affine transformations on the dimensions and 

mutual dispositions of the  components/~, o-, A in Aw t~''), 420 ts'n 
space. (a) The effect of displacements parallel to the a20  axis 
for (i) s = 0, (ii) s = 1 and (iii) s = 2. (b) The effect of displace- 
ments parallel to the aw axis for (i) t = 0 ,  (ii) t =  1/2 and (iii) 
t = l .  
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( b ) Displacement parallel to Aw 

In mathematical terms, this class of displacement 
can be represented by Aw(t~=Aw~°)--tA20 ~°~ and 
A20(t) = A20 ~°~. 

This type of transformation has no obvious func- 
tion in relation to the classical wide-aperture pro- 
cedure since it involves associating A20 data points 
from different aw settings. It is only with a two- 
dimensional aw, a20  array of data points that trans- 
formations of this type are feasible. 

For illustration, we consider only three possibilities 
here, t =0,  t =  1/2 and t = 1, Figs. 2(b)(i), (ii) and 
(iii) respectively. That for t = 1/2, Fig. 2(b)(ii), is of 
interest in that it provides a form of presentation that 
is readily related to a reciprocal-space-compatible 
one, see Figs. l(b)(i) and (ii). Fig. 2(b)(ii) is in 
angular measure and the tr)t angle is tan -~ 1/2 and 
invariant with 0. If the component ~r is reduced to a 
minor status relative to /z and X, then, in such a 
two-component two-dimensional distribution where 
/x/r and )t are at right angles, the estimation of these 
components, individually, is feasible. 

When two non-zero affine transformations (s, t) are 
applied to a two-dimensional (dw, a20)  array in 
respect of two axes, the operations are non-commuta- 
tive and the sequence of operations must be defined. 

4. Measurement of the 'level of interaction' (reflec- 
tivity)/mosaic distribution for a single reflection 

In terms of an ideal experiment, what one seeks to 
achieve is the measurement of the reflectivity distribu- 
tion of any given reflection of the specimen crystal, 
with radiation of an infinitely narrow waveband from 
a vanishingly small source, the measurements being 
preferably placed on an absolute scale by reference 
to the incident beam. Then I (A to )~r (aw) ,  where 
r(aw) is the reflectivity (see Mathieson, 1984a). 

However, in the practical terms of the majority of 
the experimental arrangements that have been 
devised to investigate Bragg reflections from small 
single crystals, this core information about reflectivity 
is smeared out and obscured by the convoluting 
operation of the many other components introduced 
as part of the experimental set-up to obtain measur- 
able diffracted intensity, as outlined in § 1. 

We may summarize this situation, in respect of the 
classical conventional measurement procedure, by 
the generalized relationship in (2): 

I(Ato) oz r(Ato) • g(Ato), (2) 

where I is the measured intensity and R the resolution 
or instrument function. For imperfect crystals, the 
more appropriate symbol for the reflectivity would 
be r*, the extinguished reflectivity distribution. 

To disentangle the information concerning the 
reflectivity distribution r*(aw) for small imperfect 

crystals from the measurements of the intensity profile 
I(Ato) is an almost insurmountable task. The various 
components of the one-dimensional resolution func- 
tion R(Ato), namely tr, ;t, A etc., are, in angular terms, 
either singly and certainly together, of so much greater 
(angular) magnitude than r* that the inverse process 
of deconvoluting r* from I is virtually impossible. 

There are two ways of tackling this fundamental 
problem. One is to increase the angular range of 
r*(Aw), i.e. to increase the angular range of the 
mosaic spread of the specimen so that it is sig- 
nificantly greater than that of the resolution function, 
R(Aw),  and deconvolution may be feasible. This 
classical solution (in the extreme - powdering the 
specimen - see Darwin, 1922, p. 826) has been used 
more recently by Schneider, Hansen & Kretschmer 
(1981) in y-ray diffraction and by Yelon, van Laar, 
Kaprzyk & Maniawski (1984) in neutron diffraction. 
This approach may involve increasing the mosaic 
spread to a FWHH of many minutes of arc. It does 
mean that one is modifying the specimen significantly 
and such an approach may not be feasible in all cases, 
e.g. brittle materials. Also, one may wish to investigate 
a given specimen without modification. 

The other approach is to reduce the angular range 
of R. R(Aw) has many components (see above), the 
one with the most significant effect on I(Ato) being 
generally the wide aperture in front of the detector 
in the conventional procedure. When a narrow aper- 
ture is substituted, then the measurement situation is 
two dimensional and the angular resolution is greatly 
improved, so that one can begin to recognize the 
individual contributing components/x, tr, A and can 
attempt to determine their individual (angular) mag- 
nitudes (see Mathieson, 1984a). Here, the resolution 
function becomes two dimensional, R(aw, a20).  

It is then obvious that the further reduction of the 
number of principal components to two and so to the 
same number of dimensions as ato, za20 space is a 
highly advantageous step, see Figs. 2 and 6 in 
Mathieson (1984a). In the case treated here, the effec- 
tive source size in the diffraction plane has been 
reduced to the order of 50 Ixm (equivalent on our 
Picker diffractometer to ca 0-01 ° (or 40") in terms of 
Ato) (Mathieson & Stevenson, 1984) so that one 
should be able to derive useful information in a 
relatively direct manner concerning mosaic spreads 
with a FWHH of a few hundredths of 1 ° and certainly 
differentiate between, say, Gaussian and Lorentzian 
distributions. 

When there are only two major components, such 
as r* and A, the relationship with the intensity distri- 
bution is given, for example, by (3): 

i ( Aw ~O,1/2~, A20~0,~/2)) 

~: [r*(aw ~°'~/2~) × x (a  20~°,1/2~)] 

. R(Aw ~°,1/2~, A20~o,1/2)), (3) 
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where  we have  cons ide red  the s = 0, t = 1/2 case [cf. 
Fig. 2(b)( i i ) ] ,  a n d  R is the resolut ion func t ion ,  con- 
ta in ing o-, A etc., but  not  a (the a c o m p o n e n t  being 
readi ly  ident i f ied in alto, ,420 space) .  

In ope ra t iona l  terms,  t h e / ( a l t o , / 1 2 0 )  (s -- 0) distri- 
but ion,  Fig. 3 ( a ) , t  is t r a n s f o r m e d  to a represen ta -  
t ional  fo rm tha t  a l lows conven ien t  ex t rac t ion  of  the 
reflectivity d is t r ibut ion.  This can be ach ieved  by an 
aftine t r a n s f o r m a t i o n  of  the type  t = 1/2 [Fig. 3(b)( i ) ] .  
P rov ided  the  mosa ic  d is t r ibut ion of  the spec imen  
crystal  is h o m o g e n e o u s  a long the crystal ,  then,  over  
the wave leng th  band ,  say an a , ,  a2 double t ,  the r* 
d is t r ibut ion  is genera l ly  invar ian t  (see Ma th i e son ,  
1984a)  so s u m m a t i o n  para l le l  to the A axis [see Fig. 
2(b)( i i ) ]  will yield the d is t r ibut ion,  Fig. 3(c) .  

An a l te rna t ive  a p p r o a c h  is to t r ans fo rm the da t a  
a r ray  to the s = 2, i.e. to~20 scan mode  [Fig. 3(b) ( i i ) ]  
(see also Ma th i e son ,  1983d).  In this case,  the vertical  
axis is a whi le  the I~ / r  axis is at a s lope of  - t a n  -l 1/2 
to the al20 axis. By s u m m i n g  paral le l  to the a axis 
and  over  the same AA w a v e b a n d , $  one can derive the 
one -d imens iona l  d is t r ibut ion  r* (A20) .  The resul tant  
d is t r ibut ion  should ,  of  course ,  be essential ly indepen-  
dent  o f  the  size o f  the AA w a v e b a n d ,  but  the step in 
al20 is twice tha t  in alto. In pract ice,  the resul t ing 
curve was,  as expec ted ,  vir tual ly  ident ical  to tha t  in 
Fig. 3(c) .  

The F W H H  of  the reflectivity d is t r ibut ion in Fig. 
3(c)  is - 2 ' .  The  t echn ique  out l ined here is one  that  
does  not  necess i ta te  complex  equ ipmen t  and  can be 
readi ly  set up with exist ing convent iona l  diffrac- 
tometers .  Never the less ,  its capabi l i ty  in respect  of  
imper fec t  crystals  is compa t ib l e  with more  e labora te  
set-ups,  e.g. using a y - ray  source,  Yelon et al. (1981) 
on HgI2 a n d  L o s h m a n o v  et al. (1984) on ZnO.  It is 
in terest ing to note  tha t  a slice scan (Math ie son ,  1982) 
t aken  para l le l  to the ~ axis for  the two-d imens iona l  
a r ray  of  d a t a  points ,  col lected with a ' shor t '  source  
ins tead o f  a ' tal l '  source  (Ma th i e son  & Stevenson ,  
1984) and  t r a n s f o r m e d  accord ing  to s = 2, has a shape  
s imilar  to tha t  in Fig. 3(c)  and  a F W H H  of  - 2 . 5 ' .  
This slice scan  was  t aken  on the low-wave leng th  side 
of  the a l  p e a k  so that  there  wou ld  be no co r rup t ion  
due  to the cr c o m p o n e n t  assoc ia ted  with the a 2 peak.  
It wou ld  seem that  such a scan would  p rov ide  an 
a d e q u a t e  s tar t ing point ,  for  p., in the synthesis  o f  the 

various components, with a view to modelling the 
observed  intensi ty  d i s t r i bu t ion / ( a l t o ,  A20)  (see § 1). 
I f  the two-d imens iona l  a r ray  of  da ta  points  is used  
to derive a d is t r ibut ion  ana logous  to Fig. 3(c)  the 

T Fig. 3(a) was obtained for the 112 reflection of a small single 
crystal (average dimension -0.06 mm) of tetragonal CuInSe2, 
using a 'tall' source (Mathieson & Stevenson, 1984) of unfiltered 
Mo Ka radiation. The 0 value for this reflection is -6.1 ° 

~: One might more conveniently carry out this procedure after 
further transforming the data array according to t = -1/2, so that 
the A and I.t/r axes are at right angles. 
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Fig. 3. ( a )  I (aa~,  A28 )  (s = 0) d i s t r i bu t i on  obta ined fo r  the IT2  
reflection of CulnSe 2 with Mo Ka radiation. The resolution 
function, R(Ato m~, A20m)), is estimated by convoluting the dis- 
tributions associated with the source size (-0-01 ° along both 
Ato m) and A20 tin) and the detector aperture size (-0.02 ° along 
A20(°)). (b) The result, for the l(Ato, A20) distribution depicted 
in (a), of applying an arlene transformation according to (i) 
t = !/2 and (ii) s = 2. The resolution function, 
R(Ato (1/2}, A20~w2)), is an appropriate modification of 
R (Ato tin, A 20 ~°~). (c) The extinguished reflectivity distribution, 
r*(Ato), derived by summing data points parallel to the a axis 
of Fig. 3(b)(i) [see Fig. 2(b)(ii)]. 
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result is a much broader curve (FWHH - 3.5') owing 
to the larger contribution of tr. 

The reflectivity distribution derived in Fig. 3(c) is 
still convoluted with the remaining resolution or 
instrument function, or, rather, its component parallel 
to Ato, the resolution function being R(zato, A20). 
This, however, is now quite small and may be deter- 
mined either by estimation based on the size of the 
source and the size of the detector aperture (see 
Appendix), as in Figs. 3(a) and 3(b)(i), or by use of 
a small perfect crystal of the same dimensions (or 
nearly so) as the specimen crystal. 

5. Discussion 

In the classical mode, i.e. using one-dimensional pro- 
file measurement, the determination of a reflectivity 
distribution (referred to earlier as a rocking curve) 
required the use of a two-crystal spectrometer (see 
Compton & Allison, 1935; James, 1948). Even so, the 
capabilities of that instrument in this respect are 
displayed only for a rather special combination of 
crystal and apparatus parameters. The necessary con- 
ditions for the derivation of a reflectivity distribution 
free of wavelength dispersion are that the spacings 
of the two crystals should be identical and that they 
should be in the parallel (n, - n )  configuration. These 
conditions place a considerable restriction on the 
practical application of this technique in that one 
requires a range of monochromator crystals of 
appropriate spacings if one wishes to explore the 
reflectivity distributions of a series of refections from 
a given specimen over a wide range of 0. The ultimate 
precision (in angular terms) of this instrument operat- 
ing in this mode is extremely high and ideally suited 
for the examination of crystals with low defect. 
content. Operationally, it functions normally with 
extended-face crystals. 

For imperfect crystals, the angular range of the 
reflectivity distribution is, by the nature of such speci- 
mens, greater than that of a perfect crystal and so the 
angular precision required to measure the former is 
less critical than for the latter. As a result, the 
improved zato,/120 technique can enable the determi- 
nation of the reflectivity distribution for such speci- 
mens in a single-crystal configuration. For this con- 
figuration, there are no restrictions on 0 and all reflec- 
tions of significant intensity can be studied. In addi- 
tion, no special conditions apply to the crystal speci- 
men except that the volume irradiated should be 
small. As noted in the text, affine transformation 
according to t = 1/2 [Fig. 2(b)(ii)] disposes the r*/tz* 
and h loci at right angles. In effect, this provides a 
record of the reflectivity distribution over the range 
of the wavelength band of the measurement 
( -0 .012 /~  in this case), the minimum AA band being 
that associated with the resolution capability of the 
set-up parallel to h. In this case, it corresponds to 

0.02-0.03 ° , this being determined by the size of the 
detector aperture convoluted with the size of the 
source. This is smaller than the al,  a2 separation, 
even at ---6.1°0 ('--0"04°). So, in theory, one can 
inspect r*(Ato)'s variation with h and, if constant, 
then a more precise estimate of the average distribu- 
tion can be derived. 

The similarity of the disposition in zato, A20 space, 
appropriately transformed, of r* and ;t in the single- 
crystal configuration (for all 0) with that in the two- 
crystal configuration (only for Oc = 0M) can be seen 
by comparing Fig. 2(b)(ii) here and Fig. 8(c)(iii) of 
Mathieson (1985), which deals with small-crystal X- 
ray diffractometry with an ante-monochromator. 

Investigation of the reflectivity (rocking) curve by 
means of the Ato, A2O technique in conjunction with 
a 'tall thin' source is applicable not only to small 
single crystals but also to selected-area studies of 
extended-plate crystals (in transmission mode). While 
demonstrated here with a conventional X-ray tube 
source, the technique is obviously applicable with 
other radiation sources that can provide the necessary 
dimensional conditions, such as 3,-rays and syn- 
chrotrons. 

We are grateful to Dr H. J. Whitfield for the crystals 
of CulnSe2. One of us (AWS) acknowledges the finan- 
cial support of a CSIRO Postdoctoral Award. 

APPENDIX 

Practical point 

The set-up that we have used in these experiments 
was not designed for the highest-resolution capability. 
The diffractometer is an early (1966) Picker, updated 
in respect of drives to axes and under computer 
control, but the essential mechanical features are 
unchanged. However, to extract the best out of any 
given combination of specimen crystal and detector 
aperture, a relatively simple adjustment is possible to 
'match' the source size to the specimen/aperture com- 
bination. With the 'tall' source and an initial tube 
angle of tilt (take-off angle) of (say) 1 in 10, it was 
found that the a l peak signal overflowed the detector 
aperture (or pixel) used ( -0 .1  mm or - 0 . 0 2  ° wide). 
By decreasing the take-off angle of the X-ray tube, 
the /120 spread of the peak signal will decrease but 
the signal within the aperture (pixel) remains essen- 
tially constant until the point when it contracts within 
the aperture and the signal level recorded by the 
detector will drop. It is in this region of adjustment 
that the 'match' is achieved. In our own case (with 
source-to-crystal and crystal-to-detector distances of 
approximately 20 and 25 cm respectively), we found 
this to be at ---3 °, i.e. a tilt of 1 in 20. Since we are 
using a semi-microfocus tube whose focus is 
nominally 0.4-0.5 mm wide, this suggests an 
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optimum effective source size in the diffraction plane 
of - 2 5  I~m. 

The data presented in this paper, for the 112 reflec- 
tion of CulnSe2, were collected using a take-off angle 
of 4 ° or approximately 1 in 14. Reflectivity curves for 
the 112 reflection have also been derived from data 
collected with a take-off angle of 2 ° or approximately 
1 in 30, using Mo K/3, Mo Ka and Cu Ka unfiltered 
radiations. These r*/lx* distributions are very similar 
in shape to that in Fig. 3(c), the lowest FWHH being 
-1 .6 ' .  
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Abstract 

The crystal structure of molecular chlorine could not 
be accurately predicted using a transferred nonbon- 
ded C1...C1 potential function that was found satisfac- 
tory for prediction of perchlorohydrocarbon crystal 
structures. Additional consideration of quadrupole-  
quadrupole interaction did not resolve this problem. 
One possible solution, which has been explored in 
the literature, was to define a new, nontransferable, 
CI.-.C1 potential function specifically tailored to 
molecular chlorine. Such a specialized CI...CI func- 
tion required additional adjustable parameters that 
defined an anisotropic nonbonded energy function 
for chlorine. A second possible approach, explored 
here, transferred the perchlorohydrocarbon C1...CI 
potential function to molecular chlorine. This simple 
isotropic nonbonded energy function was then 
supplemented by a partial intermolecular bonding 
force constant, which was applied to the short con- 
tacts present in this structure type. The resulting 
empirical model described the crystal structure of 
molecular chlorine within threshold accuracy. 

0108-7673/85/030296-06501.50 

Introduction 

The heavier halogens C12, Br2 and I2 have similar 
crystal structures with space-group symmetry Cmca. 
A summary of the crystal data is given in Table 1, 
and the structure type is illustrated in Fig. 1. Table 2 
gives a summary of the observed lattice energies, and 
also the intramolecular bond distances and energies 
of the isolated molecules. The fact that these struc- 
tures are layered, with all atoms in planes parallel to 
(100), immediately suggests that these are not simple 
van der Waals type structures. This is true because a 
normal van der Waals interaction would lead to a 
nonplanar type of molecular packing where the ends 
of the molecules in one layer are placed in staggered 
positions between the ends of molecules in the adja- 
cent layer. 

English & Venables (1974) have presented a general 
discussion of the crystal packing of diatomic 
molecules. They made a systematic study of several 
possible space groups for the packing of H2, N2, 02, 
F2, C12, Br2 and I2 molecules in the crystal. One of 
their conclusions was that intermolecular bonding 
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